XZ(1)                              XZ Utils                              XZ(1)

TABLE OF CONTENTS
       NAME
       SYNOPSIS
       COMMAND ALIASES
       DESCRIPTION
          Memory usage
          Concatenation and padding with .xz files
       OPTIONS
          Integer suffixes and special values
          Operation mode
          Operation modifiers
          Basic file format and compression options
          Custom compressor filter chains
          Other options
       ROBOT MODE
          List mode
          Filters help
          Memory limit information
          Version
       EXIT STATUS
       ENVIRONMENT
       LZMA UTILS COMPATIBILITY
          Compression preset levels
          Streamed vs. non-streamed .lzma files
          Unsupported .lzma files
          Trailing garbage
       NOTES
          Compressed output may vary
          Embedded .xz decompressors
       EXAMPLES
          Basics
          Parallel compression of many files
          Robot mode
          Custom compressor filter chains
       SEE ALSO
       KEYWORD INDEX

NAME
       xz,  unxz,  xzcat, lzma, unlzma, lzcat - Compress or decompress .xz and
       .lzma files

SYNOPSIS
       xz [option...]  [file...]

COMMAND ALIASES
       unxz is equivalent to xz --decompress.
       xzcat is equivalent to xz --decompress --stdout.
       lzma is equivalent to xz --format=lzma.
       unlzma is equivalent to xz --format=lzma --decompress.
       lzcat is equivalent to xz --format=lzma --decompress --stdout.

       When writing scripts that need to decompress files, it  is  recommended
       to  always use the name xz with appropriate arguments (xz -d or xz -dc)
       instead of the names unxz and xzcat.

DESCRIPTION
       xz is a general-purpose data compression tool with command line  syntax
       similar  to  gzip(1)  and  bzip2(1).  The native file format is the .xz
       format, but the legacy .lzma format used by LZMA  Utils  and  raw  com-
       pressed  streams  with  no container format headers are also supported.
       In addition, decompression of the .lz format used by lzip is supported.

       xz compresses or decompresses each file according to the selected oper-
       ation mode.  If no files are given or file is -, xz reads from standard
       input and writes the processed data to standard output.  xz will refuse
       (display an error and skip the file) to write compressed data to  stan-
       dard  output  if  it  is a terminal.  Similarly, xz will refuse to read
       compressed data from standard input if it is a terminal.

       Unless --stdout is specified, files other than - are written to  a  new
       file whose name is derived from the source file name:

       o  When  compressing,  the  suffix  of  the  target file format (.xz or
          .lzma) is appended to the source filename to get  the  target  file-
          name.

       o  When  decompressing,  the  .xz, .lzma, or .lz suffix is removed from
          the filename to get the target filename.   xz  also  recognizes  the
          suffixes .txz and .tlz, and replaces them with the .tar suffix.

       If  the  target file already exists, an error is displayed and the file
       is skipped.

       Unless writing to standard output, xz will display a warning  and  skip
       the file if any of the following applies:

       o  File  is  not  a regular file.  Symbolic links are not followed, and
          thus they are not considered to be regular files.

       o  File has more than one hard link.

       o  File has setuid, setgid, or sticky bit set.

       o  The operation mode is set to compress and the  file  already  has  a
          suffix  of  the  target file format (.xz or .txz when compressing to
          the .xz format, and .lzma or .tlz when compressing to the .lzma for-
          mat).

       o  The operation mode is set to decompress and the file doesn't have  a
          suffix of any of the supported file formats (.xz, .txz, .lzma, .tlz,
          or .lz).

       After successfully compressing or decompressing the file, xz copies the
       owner,  group, permissions, access time, and modification time from the
       source file to the target file.  If copying the group fails,  the  per-
       missions are modified so that the target file doesn't become accessible
       to  users  who  didn't  have  permission to access the source file.  xz
       doesn't support copying other metadata like access control lists or ex-
       tended attributes yet.

       Once the target file has been successfully closed, the source  file  is
       removed  unless --keep was specified.  The source file is never removed
       if the output is written to standard output or if an error occurs.

       Sending SIGINFO or SIGUSR1 to the xz process makes  it  print  progress
       information  to  standard  error.  This has only limited use since when
       standard error is a terminal, using --verbose will display an automati-
       cally updating progress indicator.

   Memory usage
       The memory usage of xz varies from a few hundred kilobytes  to  several
       gigabytes  depending  on  the  compression settings.  The settings used
       when compressing a file determine the memory requirements of the decom-
       pressor.  Typically the decompressor needs 5 % to 20 % of the amount of
       memory that the compressor needed when creating the file.  For example,
       decompressing a file created with xz -9 currently  requires  65 MiB  of
       memory.   Still,  it is possible to have .xz files that require several
       gigabytes of memory to decompress.

       Especially users of older systems may  find  the  possibility  of  very
       large  memory  usage  annoying.  To prevent uncomfortable surprises, xz
       has a built-in memory usage limiter,  which  is  disabled  by  default.
       While  some operating systems provide ways to limit the memory usage of
       processes, relying on it wasn't deemed to be flexible enough (for exam-
       ple, using ulimit(1) to limit virtual memory tends to cripple mmap(2)).

       The memory usage limiter can be enabled with the  command  line  option
       --memlimit=limit.  Often it is more convenient to enable the limiter by
       default  by  setting the environment variable XZ_DEFAULTS, for example,
       XZ_DEFAULTS=--memlimit=150MiB.  It is possible to set the limits  sepa-
       rately  for  compression  and  decompression  by  using --memlimit-com-
       press=limit and --memlimit-decompress=limit.  Using these  two  options
       outside  XZ_DEFAULTS is rarely useful because a single run of xz cannot
       do both compression  and  decompression  and  --memlimit=limit  (or  -M
       limit) is shorter to type on the command line.

       If  the specified memory usage limit is exceeded when decompressing, xz
       will display an error and decompressing the file  will  fail.   If  the
       limit  is  exceeded when compressing, xz will try to scale the settings
       down so that the limit is no longer exceeded (except when using  --for-
       mat=raw  or --no-adjust).  This way the operation won't fail unless the
       limit is very small.  The scaling of the settings is done in steps that
       don't match the compression level presets, for example, if the limit is
       only slightly less than the amount required for  xz  -9,  the  settings
       will be scaled down only a little, not all the way down to xz -8.

   Concatenation and padding with .xz files
       It is possible to concatenate .xz files as is.  xz will decompress such
       files as if they were a single .xz file.

       It  is possible to insert padding between the concatenated parts or af-
       ter the last part.  The padding must consist of null bytes and the size
       of the padding must be a multiple of four bytes.  This can  be  useful,
       for  example,  if the .xz file is stored on a medium that measures file
       sizes in 512-byte blocks.

       Concatenation and padding are not  allowed  with  .lzma  files  or  raw
       streams.

OPTIONS
   Integer suffixes and special values
       In  most places where an integer argument is expected, an optional suf-
       fix is supported to easily indicate large integers.  There must  be  no
       space between the integer and the suffix.

       KiB    Multiply  the integer by 1,024 (2^10).  Ki, k, kB, K, and KB are
              accepted as synonyms for KiB.

       MiB    Multiply the integer by 1,048,576 (2^20).  Mi, m, M, and MB  are
              accepted as synonyms for MiB.

       GiB    Multiply  the integer by 1,073,741,824 (2^30).  Gi, g, G, and GB
              are accepted as synonyms for GiB.

       The special value max can be used to indicate the maximum integer value
       supported by the option.

   Operation mode
       If multiple operation mode options are given, the last  one  takes  ef-
       fect.

       -z, --compress
              Compress.   This is the default operation mode when no operation
              mode option is specified and no other operation mode is  implied
              from the command name (for example, unxz implies --decompress).

              After  successful compression, the source file is removed unless
              writing to standard output or --keep was specified.

       -d, --decompress, --uncompress
              Decompress.  After successful decompression, the source file  is
              removed  unless  writing to standard output or --keep was speci-
              fied.

       -t, --test
              Test the integrity of compressed files.  This option is  equiva-
              lent  to --decompress --stdout except that the decompressed data
              is discarded instead of being written to  standard  output.   No
              files are created or removed.

       -l, --list
              Print  information about compressed files.  No uncompressed out-
              put is produced, and no files are created or removed.   In  list
              mode,  the program cannot read the compressed data from standard
              input or from other unseekable sources.

              The default listing shows basic  information  about  files,  one
              file  per  line.  To get more detailed information, use also the
              --verbose option.  For  even  more  information,  use  --verbose
              twice,  but  note that this may be slow, because getting all the
              extra information requires many seeks.   The  width  of  verbose
              output exceeds 80 characters, so piping the output to, for exam-
              ple,  less -S  may  be  convenient  if  the  terminal isn't wide
              enough.

              The exact output may vary between xz versions and different  lo-
              cales.   For  machine-readable  output, --robot --list should be
              used.

   Operation modifiers
       -k, --keep
              Don't delete the input files.

              Since xz 5.2.6, this option also makes xz compress or decompress
              even if the input is a symbolic link to a regular file, has more
              than one hard link, or has the setuid,  setgid,  or  sticky  bit
              set.   The setuid, setgid, and sticky bits are not copied to the
              target file.  In  earlier  versions  this  was  only  done  with
              --force.

       -f, --force
              This option has several effects:

              o  If the target file already exists, delete it before compress-
                 ing or decompressing.

              o  Compress  or  decompress even if the input is a symbolic link
                 to a regular file, has more than one hard link,  or  has  the
                 setuid,  setgid,  or sticky bit set.  The setuid, setgid, and
                 sticky bits are not copied to the target file.

              o  When used with --decompress --stdout and xz cannot  recognize
                 the  type  of  the source file, copy the source file as is to
                 standard output.  This allows xzcat --force to be  used  like
                 cat(1) for files that have not been compressed with xz.  Note
                 that in future, xz might support new compressed file formats,
                 which  may  make xz decompress more types of files instead of
                 copying them as is to standard output.   --format=format  can
                 be  used to restrict xz to decompress only a single file for-
                 mat.

       -c, --stdout, --to-stdout
              Write the compressed or decompressed data to standard output in-
              stead of a file.  This implies --keep.

       --single-stream
              Decompress only the first .xz stream, and silently ignore possi-
              ble remaining input data following the  stream.   Normally  such
              trailing garbage makes xz display an error.

              xz  never  decompresses more than one stream from .lzma files or
              raw streams, but this option still makes xz ignore the  possible
              trailing data after the .lzma file or raw stream.

              This  option has no effect if the operation mode is not --decom-
              press or --test.

              Since xz 5.7.1alpha, --single-stream implies --keep.

       --no-sparse
              Disable creation of sparse files.  By default, if  decompressing
              into a regular file, xz tries to make the file sparse if the de-
              compressed  data  contains  long  sequences of binary zeros.  It
              also works when writing to standard output as long  as  standard
              output  is  connected  to  a regular file and certain additional
              conditions are met to make it safe.  Creating sparse  files  may
              save  disk  space and speed up the decompression by reducing the
              amount of disk I/O.

       -S .suf, --suffix=.suf
              When compressing, use .suf as the suffix for the target file in-
              stead of .xz or .lzma.  If not writing to  standard  output  and
              the  source  file already has the suffix .suf, a warning is dis-
              played and the file is skipped.

              When decompressing, recognize files with the suffix .suf in  ad-
              dition  to files with the .xz, .txz, .lzma, .tlz, or .lz suffix.
              If the source file has the suffix .suf, the suffix is removed to
              get the target filename.

              When compressing or decompressing  raw  streams  (--format=raw),
              the  suffix  must always be specified unless writing to standard
              output, because there is no default suffix for raw streams.

       --files[=file]
              Read the filenames to process from file;  if  file  is  omitted,
              filenames  are read from standard input.  Filenames must be ter-
              minated with the newline character.  A dash (-) is  taken  as  a
              regular  filename; it doesn't mean standard input.  If filenames
              are given also as command line arguments, they are processed be-
              fore the filenames read from file.

       --files0[=file]
              This is identical to --files[=file] except  that  each  filename
              must be terminated with the null character.

   Basic file format and compression options
       -F format, --format=format
              Specify the file format to compress or decompress:

              auto   This  is  the default.  When compressing, auto is equiva-
                     lent to xz.  When decompressing, the format of the  input
                     file  is  automatically  detected.  Note that raw streams
                     (created with --format=raw) cannot be auto-detected.

              xz     Compress to the .xz file format, or accept only .xz files
                     when decompressing.

              lzma, alone
                     Compress to the legacy .lzma file format, or accept  only
                     .lzma  files  when  decompressing.   The alternative name
                     alone is provided for backwards compatibility  with  LZMA
                     Utils.

              lzip   Accept only .lz files when decompressing.  Compression is
                     not supported.

                     The .lz format version 0 and the unextended version 1 are
                     supported.  Version 0 files were produced by lzip 1.3 and
                     older.   Such  files  aren't common but may be found from
                     file archives as a few source packages were  released  in
                     this  format.   People  might  have old personal files in
                     this format too.  Decompression support  for  the  format
                     version 0 was removed in lzip 1.18.

                     lzip  1.4 and later create files in the format version 1.
                     The sync flush marker extension to the format  version  1
                     was added in lzip 1.6.  This extension is rarely used and
                     isn't supported by xz (diagnosed as corrupt input).

              raw    Compress  or  uncompress a raw stream (no headers).  This
                     is meant for advanced users only.  To decode raw streams,
                     you need use --format=raw and explicitly specify the fil-
                     ter chain, which normally would have been stored  in  the
                     container headers.

       -C check, --check=check
              Specify  the  type  of the integrity check.  The check is calcu-
              lated from the uncompressed data and stored  in  the  .xz  file.
              This  option  has  an  effect only when compressing into the .xz
              format; the .lzma format doesn't support integrity checks.   The
              integrity check (if any) is verified when the .xz file is decom-
              pressed.

              Supported check types:

              none   Don't  calculate an integrity check at all.  This is usu-
                     ally a bad idea.  This can be useful  when  integrity  of
                     the data is verified by other means anyway.

              crc32  Calculate  CRC32  using  the  polynomial  from IEEE-802.3
                     (Ethernet).

              crc64  Calculate CRC64 using the polynomial from ECMA-182.  This
                     is the default, since it is slightly better than CRC32 at
                     detecting damaged files and the speed difference is  neg-
                     ligible.

              sha256 Calculate  SHA-256.   This  is somewhat slower than CRC32
                     and CRC64.

              Integrity of the .xz headers is always verified with CRC32.   It
              is not possible to change or disable it.

       --ignore-check
              Don't verify the integrity check of the compressed data when de-
              compressing.   The CRC32 values in the .xz headers will still be
              verified normally.

              Do not use this option unless you know what you are doing.  Pos-
              sible reasons to use this option:

              o  Trying to recover data from a corrupt .xz file.

              o  Speeding up decompression.  This matters mostly with  SHA-256
                 or with files that have compressed extremely well.  It's rec-
                 ommended  to  not use this option for this purpose unless the
                 file integrity is verified externally in some other way.

       -0 ... -9
              Select a compression preset level.  The default is -6.  If  mul-
              tiple  preset  levels  are specified, the last one takes effect.
              If a custom filter chain was already specified, setting  a  com-
              pression preset level clears the custom filter chain.

              The  differences  between  the presets are more significant than
              with gzip(1) and bzip2(1).  The  selected  compression  settings
              determine  the memory requirements of the decompressor, thus us-
              ing a too high preset level might make it painful to  decompress
              the  file  on an old system with little RAM.  Specifically, it's
              not a good idea to blindly use -9 for everything like  it  often
              is with gzip(1) and bzip2(1).

              -0 ... -3
                     These  are somewhat fast presets.  -0 is sometimes faster
                     than gzip -9 while compressing much better.   The  higher
                     ones  often have speed comparable to bzip2(1) with compa-
                     rable or better compression ratio, although  the  results
                     depend a lot on the type of data being compressed.

              -4 ... -6
                     Good  to very good compression while keeping decompressor
                     memory usage reasonable even for old systems.  -6 is  the
                     default,  which is usually a good choice for distributing
                     files that need to be decompressible even on systems with
                     only 16 MiB RAM.  (-5e or -6e may  be  worth  considering
                     too.  See --extreme.)

              -7 ... -9
                     These  are  like -6 but with higher compressor and decom-
                     pressor memory requirements.  These are useful only  when
                     compressing  files bigger than 8 MiB, 16 MiB, and 32 MiB,
                     respectively.

              On the same hardware, the decompression speed is approximately a
              constant number of bytes of  compressed  data  per  second.   In
              other  words,  the better the compression, the faster the decom-
              pression will usually be.  This also means that  the  amount  of
              uncompressed output produced per second can vary a lot.

              The following table summarises the features of the presets:

                     Preset   DictSize   CompCPU   CompMem   DecMem
                       -0     256 KiB       0        3 MiB    1 MiB
                       -1       1 MiB       1        9 MiB    2 MiB
                       -2       2 MiB       2       17 MiB    3 MiB
                       -3       4 MiB       3       32 MiB    5 MiB
                       -4       4 MiB       4       48 MiB    5 MiB
                       -5       8 MiB       5       94 MiB    9 MiB
                       -6       8 MiB       6       94 MiB    9 MiB
                       -7      16 MiB       6      186 MiB   17 MiB
                       -8      32 MiB       6      370 MiB   33 MiB
                       -9      64 MiB       6      674 MiB   65 MiB

              Column descriptions:

              o  DictSize is the LZMA2 dictionary size.  It is waste of memory
                 to  use a dictionary bigger than the size of the uncompressed
                 file.  This is why it is good to avoid using the  presets  -7
                 ...  -9 when there's no real need for them.  At -6 and lower,
                 the amount of memory wasted is usually low enough to not mat-
                 ter.

              o  CompCPU is a simplified representation of the LZMA2  settings
                 that  affect  compression speed.  The dictionary size affects
                 speed too, so while CompCPU is the same for levels -6 ... -9,
                 higher levels still tend to be a little slower.  To get  even
                 slower and thus possibly better compression, see --extreme.

              o  CompMem  contains  the  compressor memory requirements in the
                 single-threaded mode.  It may vary slightly between  xz  ver-
                 sions.

              o  DecMem  contains  the decompressor memory requirements.  That
                 is, the compression settings determine  the  memory  require-
                 ments of the decompressor.  The exact decompressor memory us-
                 age  is slightly more than the LZMA2 dictionary size, but the
                 values in the table have been rounded up  to  the  next  full
                 MiB.

              Memory requirements of the multi-threaded mode are significantly
              higher  than that of the single-threaded mode.  With the default
              value of --block-size, each thread needs 3*3*DictSize plus Comp-
              Mem or DecMem.  For example, four threads with preset  -6  needs
              660-670 MiB of memory.

       -e, --extreme
              Use  a  slower  variant of the selected compression preset level
              (-0 ... -9) to hopefully get a little bit better compression ra-
              tio, but with bad luck this can also make it worse.   Decompres-
              sor  memory  usage  is not affected, but compressor memory usage
              increases a little at preset levels -0 ... -3.

              Since there are two presets  with  dictionary  sizes  4 MiB  and
              8 MiB,  the  presets  -3e  and  -5e use slightly faster settings
              (lower CompCPU) than -4e and -6e, respectively.  That way no two
              presets are identical.

                     Preset   DictSize   CompCPU   CompMem   DecMem
                      -0e     256 KiB       8        4 MiB    1 MiB
                      -1e       1 MiB       8       13 MiB    2 MiB
                      -2e       2 MiB       8       25 MiB    3 MiB
                      -3e       4 MiB       7       48 MiB    5 MiB
                      -4e       4 MiB       8       48 MiB    5 MiB
                      -5e       8 MiB       7       94 MiB    9 MiB
                      -6e       8 MiB       8       94 MiB    9 MiB
                      -7e      16 MiB       8      186 MiB   17 MiB
                      -8e      32 MiB       8      370 MiB   33 MiB
                      -9e      64 MiB       8      674 MiB   65 MiB

              For example, there are a total of four presets  that  use  8 MiB
              dictionary,  whose  order from the fastest to the slowest is -5,
              -6, -5e, and -6e.

       --fast
       --best These are somewhat misleading aliases for  -0  and  -9,  respec-
              tively.   These  are  provided  only for backwards compatibility
              with LZMA Utils.  Avoid using these options.

       --block-size=size
              When compressing to the .xz format, split the  input  data  into
              blocks  of  size bytes.  The blocks are compressed independently
              from each other, which helps with multi-threading and makes lim-
              ited random-access decompression possible.  This option is typi-
              cally used to override the default block size in  multi-threaded
              mode, but this option can be used in single-threaded mode too.

              In  multi-threaded mode about three times size bytes will be al-
              located in each thread for buffering input and output.  The  de-
              fault  size  is  three times the LZMA2 dictionary size or 1 MiB,
              whichever is more.  Typically a good value is 2-4 times the size
              of the LZMA2 dictionary or at least 1 MiB.  Using size less than
              the LZMA2 dictionary size is waste of RAM because then the LZMA2
              dictionary buffer will never get fully used.  In  multi-threaded
              mode,  the  sizes of the blocks are stored in the block headers.
              This size information is required for multi-threaded  decompres-
              sion.

              In  single-threaded  mode no block splitting is done by default.
              Setting this option doesn't affect memory usage.  No size infor-
              mation is stored in block headers, thus files created in single-
              threaded mode won't be identical  to  files  created  in  multi-
              threaded  mode.  The lack of size information also means that xz
              won't be able decompress the files in multi-threaded mode.

       --block-list=items
              When compressing to the .xz format, start a new  block  with  an
              optional custom filter chain after the given intervals of uncom-
              pressed data.

              The  items are a comma-separated list.  Each item consists of an
              optional filter chain number between 0 and 9 followed by a colon
              (:) and a required size of uncompressed data.  Omitting an  item
              (two  or more consecutive commas) is a shorthand to use the size
              and filters of the previous item.

              If the input file is bigger than the sum of the sizes in  items,
              the  last item is repeated until the end of the file.  A special
              value of 0 may be used as the last size  to  indicate  that  the
              rest of the file should be encoded as a single block.

              An  alternative  filter chain for each block can be specified in
              combination with the --filters1=filters  ...  --filters9=filters
              options.   These options define filter chains with an identifier
              between 1-9.  Filter chain 0 can be used to refer to the default
              filter chain, which is the  same  as  not  specifying  a  filter
              chain.   The  filter chain identifier can be used before the un-
              compressed size, followed by a colon (:).  For example,  if  one
              specifies   --block-list=1:2MiB,3:2MiB,2:4MiB,,2MiB,0:4MiB  then
              blocks will be created using:

              o  The filter chain specified by --filters1 and 2 MiB input

              o  The filter chain specified by --filters3 and 2 MiB input

              o  The filter chain specified by --filters2 and 4 MiB input

              o  The filter chain specified by --filters2 and 4 MiB input

              o  The default filter chain and 2 MiB input

              o  The default filter chain and 4 MiB input for every block  un-
                 til end of input.

              If  one  specifies  a size that exceeds the encoder's block size
              (either the default value in threaded mode or the  value  speci-
              fied with --block-size=size), the encoder will create additional
              blocks while keeping the boundaries specified in items.  For ex-
              ample,       if       one      specifies      --block-size=10MiB
              --block-list=5MiB,10MiB,8MiB,12MiB,24MiB and the input  file  is
              80  MiB, one will get 11 blocks: 5, 10, 8, 10, 2, 10, 10, 4, 10,
              10, and 1 MiB.

              In multi-threaded mode the sizes of the blocks are stored in the
              block headers.  This isn't done in single-threaded mode, so  the
              encoded  output won't be identical to that of the multi-threaded
              mode.

       --flush-timeout=timeout
              When compressing, if more than timeout milliseconds (a  positive
              integer)  has  passed  since the previous flush and reading more
              input would block, all the pending input data  is  flushed  from
              the  encoder  and made available in the output stream.  This can
              be useful if xz is used to compress data that is streamed over a
              network.  Small timeout values make the data  available  at  the
              receiving  end with a small delay, but large timeout values give
              better compression ratio.

              This feature is disabled by default.  If this option  is  speci-
              fied  more  than  once,  the last one takes effect.  The special
              timeout value of 0 can be used to explicitly disable  this  fea-
              ture.

              This feature is not available on non-POSIX systems.

              This  feature is still experimental.  Currently xz is unsuitable
              for decompressing the stream in real time due  to  how  xz  does
              buffering.

       --no-sync
              Do  not  synchronize  the  target  file and its directory to the
              storage device before removing the source file.   This  can  im-
              prove  performance  if  compressing  or decompressing many small
              files.  However, if the system crashes soon after the  deletion,
              it is possible that the target file was not written to the stor-
              age  device  but the delete operation was.  In that case neither
              the original source file nor the target file is available.

              This option has an effect only when xz is going  to  remove  the
              source file.  In other cases synchronization is never done.

              The synchronization and --no-sync were added in xz 5.7.1alpha.

       --memlimit-compress=limit
              Set  a  memory  usage  limit for compression.  If this option is
              specified multiple times, the last one takes effect.

              If the compression settings exceed the limit, xz will attempt to
              adjust the settings downwards so that the limit is no longer ex-
              ceeded and display a notice that automatic adjustment was  done.
              The  adjustments  are done in this order: reducing the number of
              threads, switching to single-threaded mode if even one thread in
              multi-threaded mode exceeds the limit, and finally reducing  the
              LZMA2 dictionary size.

              When  compressing  with  --format=raw or if --no-adjust has been
              specified, only the number of threads may be  reduced  since  it
              can be done without affecting the compressed output.

              If  the  limit cannot be met even with the adjustments described
              above, an error is displayed and xz will exit with  exit  status
              1.

              The limit can be specified in multiple ways:

              o  The  limit can be an absolute value in bytes.  Using an inte-
                 ger suffix like MiB can be useful.  Example:  --memlimit-com-
                 press=80MiB

              o  The  limit can be specified as a percentage of total physical
                 memory (RAM).  This can be useful especially when setting the
                 XZ_DEFAULTS environment variable in  a  shell  initialization
                 script  that is shared between different computers.  That way
                 the limit is automatically bigger on systems with  more  mem-
                 ory.  Example: --memlimit-compress=70%

              o  The  limit  can be reset back to its default value by setting
                 it to 0.  This is currently equivalent to setting  the  limit
                 to max (no memory usage limit).

              For  32-bit  xz  there  is a special case: if the limit would be
              over 4020 MiB, the limit is set to 4020 MiB.  On MIPS32 2000 MiB
              is used instead.  (The values 0 and max aren't affected by this.
              A similar feature doesn't exist for decompression.)  This can be
              helpful when a 32-bit executable has  access  to  4 GiB  address
              space  (2  GiB on MIPS32) while hopefully doing no harm in other
              situations.

              See also the section Memory usage.

       --memlimit-decompress=limit
              Set a memory usage limit for decompression.  This  also  affects
              the  --list  mode.  If the operation is not possible without ex-
              ceeding the limit, xz will display an  error  and  decompressing
              the  file will fail.  See --memlimit-compress=limit for possible
              ways to specify the limit.

       --memlimit-mt-decompress=limit
              Set a memory usage limit for multi-threaded decompression.  This
              can only affect the number of threads; this will never  make  xz
              refuse  to  decompress a file.  If limit is too low to allow any
              multi-threading, the limit is ignored and xz  will  continue  in
              single-threaded  mode.   Note that if also --memlimit-decompress
              is used, it will always apply to both single-threaded and multi-
              threaded modes, and so the effective limit  for  multi-threading
              will  never  be higher than the limit set with --memlimit-decom-
              press.

              In contrast to the other  memory  usage  limit  options,  --mem-
              limit-mt-decompress=limit  has  a system-specific default limit.
              xz --info-memory can be used to see the current value.

              This option and its default  value  exist  because  without  any
              limit  the  threaded decompressor could end up allocating an in-
              sane amount of memory with some input  files.   If  the  default
              limit is too low on your system, feel free to increase the limit
              but never set it to a value larger than the amount of usable RAM
              as  with  appropriate  input  files  xz will attempt to use that
              amount of memory even with a low number of threads.  Running out
              of memory or swapping will  not  improve  decompression  perfor-
              mance.

              See  --memlimit-compress=limit  for possible ways to specify the
              limit.  Setting limit to 0 resets the limit to the default  sys-
              tem-specific value.

       -M limit, --memlimit=limit, --memory=limit
              This   is  equivalent  to  specifying  --memlimit-compress=limit
              --memlimit-decompress=limit --memlimit-mt-decompress=limit.

       --no-adjust
              Display an error and exit if the memory usage  limit  cannot  be
              met  without  adjusting settings that affect the compressed out-
              put.  That is, this prevents xz from switching the encoder  from
              multi-threaded  mode  to  single-threaded mode and from reducing
              the LZMA2 dictionary size.  Even when this option  is  used  the
              number  of threads may be reduced to meet the memory usage limit
              as that won't affect the compressed output.

              Automatic adjusting is always disabled when creating raw streams
              (--format=raw).

       -T threads, --threads=threads
              Specify the number of worker threads to use.  Setting threads to
              a special value 0 makes xz use up to  as  many  threads  as  the
              processor(s)  on  the  system  support.   The  actual  number of
              threads can be fewer than threads if the input file is  not  big
              enough  for  threading  with the given settings or if using more
              threads would exceed the memory usage limit.

              The single-threaded and multi-threaded compressors produce  dif-
              ferent  output.  Single-threaded compressor will give the small-
              est file size but only the output from the  multi-threaded  com-
              pressor  can  be  decompressed  using multiple threads.  Setting
              threads to 1 will use the single-threaded mode.  Setting threads
              to any other value, including 0,  will  use  the  multi-threaded
              compressor even if the system supports only one hardware thread.
              (xz 5.2.x used single-threaded mode in this situation.)

              To  use multi-threaded mode with only one thread, set threads to
              +1.  The + prefix has no effect with values  other  than  1.   A
              memory  usage  limit can still make xz switch to single-threaded
              mode unless --no-adjust is used.  Support for the +  prefix  was
              added in xz 5.4.0.

              If an automatic number of threads has been requested and no mem-
              ory  usage  limit has been specified, then a system-specific de-
              fault soft limit will be used to possibly limit  the  number  of
              threads.   It is a soft limit in sense that it is ignored if the
              number of threads becomes one, thus a soft limit will never stop
              xz from compressing or decompressing.  This default  soft  limit
              will  not  make  xz  switch  from multi-threaded mode to single-
              threaded  mode.   The  active  limits  can  be  seen   with   xz
              --info-memory.

              Currently  the  only threading method is to split the input into
              blocks and compress them independently from each other.  The de-
              fault block size depends on the compression  level  and  can  be
              overridden with the --block-size=size option.

              Threaded decompression only works on files that contain multiple
              blocks with size information in block headers.  All large enough
              files compressed in multi-threaded mode meet this condition, but
              files   compressed   in   single-threaded  mode  don't  even  if
              --block-size=size has been used.

              The default value for threads is 0.  In xz 5.4.x and  older  the
              default is 1.

   Custom compressor filter chains
       A custom filter chain allows specifying the compression settings in de-
       tail  instead  of  relying  on  the settings associated to the presets.
       When a custom filter chain is specified, preset options (-0 ... -9  and
       --extreme)  earlier on the command line are forgotten.  If a preset op-
       tion is specified after one or more custom filter  chain  options,  the
       new  preset  takes effect and the custom filter chain options specified
       earlier are forgotten.

       A filter chain is comparable to piping on the command line.  When  com-
       pressing, the uncompressed input goes to the first filter, whose output
       goes  to  the next filter (if any).  The output of the last filter gets
       written to the compressed file.  The maximum number of filters  in  the
       chain  is  four,  but typically a filter chain has only one or two fil-
       ters.

       Many filters have limitations on where they can be in the filter chain:
       some filters can work only as the last filter in the chain,  some  only
       as  a non-last filter, and some work in any position in the chain.  De-
       pending on the filter, this limitation is either inherent to the filter
       design or exists to prevent security issues.

       A custom filter chain can be specified in two different ways.  The  op-
       tions  --filters=filters  and --filters1=filters ... --filters9=filters
       allow specifying an entire filter chain in one option using the liblzma
       filter string syntax.  Alternatively, a filter chain can  be  specified
       by  using  one  or more individual filter options in the order they are
       wanted in the filter chain.  That is, the order of the individual  fil-
       ter  options is significant!  When decoding raw streams (--format=raw),
       the filter chain must be specified in the same order as it  was  speci-
       fied  when compressing.  Any individual filter or preset options speci-
       fied before the full chain option (--filters=filters) will  be  forgot-
       ten.  Individual filters specified after the full chain option will re-
       set the filter chain.

       Both  the  full  and individual filter options take filter-specific op-
       tions as a comma-separated list.  Extra commas in options are  ignored.
       Every option has a default value, so specify those you want to change.

       To  see  the  whole  filter chain and options, use xz -vv (that is, use
       --verbose twice).  This works also for viewing the filter chain options
       used by presets.

       --filters=filters
              Specify the full filter chain or a preset in  a  single  option.
              Each filter can be separated by spaces or two dashes (--).  fil-
              ters  may  need  to be quoted on the shell command line so it is
              parsed as a single option.  To denote options, use :  or  =.   A
              preset  can  be prefixed with a - and followed with zero or more
              flags.  The only supported flag is e to apply the  same  options
              as --extreme.

       --filters1=filters ... --filters9=filters
              Specify  up  to  nine  additional filter chains that can be used
              with --block-list.

              For example, when compressing an archive with  executable  files
              followed  by  text files, the executable part could use a filter
              chain with a BCJ filter and the text part only the LZMA2 filter.

       --filters-help
              Display a help message describing how  to  specify  presets  and
              custom filter chains in the --filters and --filters1=filters ...
              --filters9=filters options, and exit successfully.

       --lzma1[=options]
       --lzma2[=options]
              Add  LZMA1  or  LZMA2 filter to the filter chain.  These filters
              can be used only as the last filter in the chain.

              LZMA1 is a legacy filter, which is supported almost  solely  due
              to  the  legacy  .lzma  file  format, which supports only LZMA1.
              LZMA2 is an updated version of LZMA1 to fix some  practical  is-
              sues  of  LZMA1.   The .xz format uses LZMA2 and doesn't support
              LZMA1 at all.  Compression speed and ratios of LZMA1  and  LZMA2
              are practically the same.

              LZMA1 and LZMA2 share the same set of options:

              preset=preset
                     Reset  all LZMA1 or LZMA2 options to preset.  Preset con-
                     sist of an integer, which may be followed by  single-let-
                     ter  preset  modifiers.   The integer can be from 0 to 9,
                     matching the command line options -0 ...  -9.   The  only
                     supported  modifier  is  currently e, which matches --ex-
                     treme.  If no preset is specified, the default values  of
                     LZMA1 or LZMA2 options are taken from the preset 6.

              dict=size
                     Dictionary (history buffer) size indicates how many bytes
                     of  the  recently  processed uncompressed data is kept in
                     memory.  The algorithm tries to find repeating  byte  se-
                     quences  (matches)  in the uncompressed data, and replace
                     them with references to the data currently in the dictio-
                     nary.  The bigger  the  dictionary,  the  higher  is  the
                     chance to find a match.  Thus, increasing dictionary size
                     usually improves compression ratio, but a dictionary big-
                     ger than the uncompressed file is waste of memory.

                     Typical  dictionary  size  is from 64 KiB to 64 MiB.  The
                     minimum is 4 KiB.  The maximum for  compression  is  cur-
                     rently 1.5 GiB (1536 MiB).  The decompressor already sup-
                     ports  dictionaries up to one byte less than 4 GiB, which
                     is the maximum for the LZMA1 and LZMA2 stream formats.

                     Dictionary size and match finder (mf) together  determine
                     the memory usage of the LZMA1 or LZMA2 encoder.  The same
                     (or bigger) dictionary size is required for decompressing
                     that  was used when compressing, thus the memory usage of
                     the decoder is determined by  the  dictionary  size  used
                     when  compressing.   The .xz headers store the dictionary
                     size either as 2^n or 2^n + 2^(n-1), so these  sizes  are
                     somewhat preferred for compression.  Other sizes will get
                     rounded up when stored in the .xz headers.

              lc=lc  Specify  the number of literal context bits.  The minimum
                     is 0 and the maximum is 4; the default is  3.   In  addi-
                     tion, the sum of lc and lp must not exceed 4.

                     All  bytes  that cannot be encoded as matches are encoded
                     as literals.  That is, literals are  simply  8-bit  bytes
                     that are encoded one at a time.

                     The  literal  coding makes an assumption that the highest
                     lc bits of the previous uncompressed byte correlate  with
                     the  next byte.  For example, in typical English text, an
                     upper-case letter is often followed by a lower-case  let-
                     ter,  and  a lower-case letter is usually followed by an-
                     other lower-case letter.  In the US-ASCII character  set,
                     the highest three bits are 010 for upper-case letters and
                     011  for  lower-case letters.  When lc is at least 3, the
                     literal coding can take advantage of this property in the
                     uncompressed data.

                     The default value (3) is usually good.  If you want maxi-
                     mum compression, test lc=4.  Sometimes it helps a little,
                     and sometimes it makes compression worse.  If it makes it
                     worse, test lc=2 too.

              lp=lp  Specify the number of literal position bits.  The minimum
                     is 0 and the maximum is 4; the default is 0.

                     Lp affects what kind of  alignment  in  the  uncompressed
                     data is assumed when encoding literals.  See pb below for
                     more information about alignment.

              pb=pb  Specify  the  number  of position bits.  The minimum is 0
                     and the maximum is 4; the default is 2.

                     Pb affects what kind of  alignment  in  the  uncompressed
                     data  is assumed in general.  The default means four-byte
                     alignment (2^pb=2^2=4), which is often a good choice when
                     there's no better guess.

                     When the alignment is known, setting pb  accordingly  may
                     reduce  the  file  size a little.  For example, with text
                     files having one-byte  alignment  (US-ASCII,  ISO-8859-*,
                     UTF-8),  setting  pb=0  can improve compression slightly.
                     For UTF-16 text, pb=1 is a good choice.  If the alignment
                     is an odd number like 3 bytes, pb=0  might  be  the  best
                     choice.

                     Even though the assumed alignment can be adjusted with pb
                     and  lp,  LZMA1  and  LZMA2  still slightly favor 16-byte
                     alignment.  It might be worth taking  into  account  when
                     designing  file  formats that are likely to be often com-
                     pressed with LZMA1 or LZMA2.

              mf=mf  Match finder has a major effect on encoder speed,  memory
                     usage,  and  compression ratio.  Usually Hash Chain match
                     finders are faster than Binary Tree match  finders.   The
                     default  depends  on the preset: 0 uses hc3, 1-3 use hc4,
                     and the rest use bt4.

                     The following match finders are  supported.   The  memory
                     usage  formulas below are rough approximations, which are
                     closest to the reality when dict is a power of two.

                     hc3    Hash Chain with 2- and 3-byte hashing
                            Minimum value for nice: 3
                            Memory usage:
                            dict * 7.5 (if dict <= 16 MiB);
                            dict * 5.5 + 64 MiB (if dict > 16 MiB)

                     hc4    Hash Chain with 2-, 3-, and 4-byte hashing
                            Minimum value for nice: 4
                            Memory usage:
                            dict * 7.5 (if dict <= 32 MiB);
                            dict * 6.5 (if dict > 32 MiB)

                     bt2    Binary Tree with 2-byte hashing
                            Minimum value for nice: 2
                            Memory usage: dict * 9.5

                     bt3    Binary Tree with 2- and 3-byte hashing
                            Minimum value for nice: 3
                            Memory usage:
                            dict * 11.5 (if dict <= 16 MiB);
                            dict * 9.5 + 64 MiB (if dict > 16 MiB)

                     bt4    Binary Tree with 2-, 3-, and 4-byte hashing
                            Minimum value for nice: 4
                            Memory usage:
                            dict * 11.5 (if dict <= 32 MiB);
                            dict * 10.5 (if dict > 32 MiB)

              mode=mode
                     Compression mode specifies the method to analyze the data
                     produced by the match finder.  Supported modes  are  fast
                     and normal.  The default is fast for presets 0-3 and nor-
                     mal for presets 4-9.

                     Usually  fast  is  used with Hash Chain match finders and
                     normal with Binary Tree match finders.  This is also what
                     the presets do.

              nice=nice
                     Specify what is considered to be  a  nice  length  for  a
                     match.  Once a match of at least nice bytes is found, the
                     algorithm stops looking for possibly better matches.

                     Nice can be 2-273 bytes.  Higher values tend to give bet-
                     ter  compression  ratio at the expense of speed.  The de-
                     fault depends on the preset.

              depth=depth
                     Specify the maximum search depth  in  the  match  finder.
                     The  default  is  the special value of 0, which makes the
                     compressor determine a reasonable depth from mf and nice.

                     Reasonable depth for Hash Chains is 4-100 and 16-1000 for
                     Binary Trees.  Using very high values for depth can  make
                     the  encoder  extremely slow with some files.  Avoid set-
                     ting the depth over 1000 unless you are prepared  to  in-
                     terrupt  the  compression  in  case  it is taking far too
                     long.

              When decoding raw streams (--format=raw), LZMA2 needs  only  the
              dictionary size.  LZMA1 needs also lc, lp, and pb.

       --x86[=options]
       --arm[=options]
       --armthumb[=options]
       --arm64[=options]
       --powerpc[=options]
       --ia64[=options]
       --sparc[=options]
       --riscv[=options]
              Add  a branch/call/jump (BCJ) filter to the filter chain.  These
              filters can be used only as a  non-last  filter  in  the  filter
              chain.

              A  BCJ filter converts relative addresses in the machine code to
              their absolute counterparts.  This doesn't change  the  size  of
              the  data  but  it increases redundancy, which can help LZMA2 to
              produce 0-15 % smaller .xz file.  The BCJ filters are always re-
              versible, so using a BCJ filter for wrong type of  data  doesn't
              cause  any data loss, although it may make the compression ratio
              slightly worse.  The BCJ filters are very fast and  use  an  in-
              significant amount of memory.

              These BCJ filters have known problems related to the compression
              ratio:

              o  Some  types of files containing executable code (for example,
                 object files, static libraries,  and  Linux  kernel  modules)
                 have  the  addresses  in  the instructions filled with filler
                 values.  These BCJ filters will still do the address  conver-
                 sion, which will make the compression worse with these files.

              o  If a BCJ filter is applied on an archive, it is possible that
                 it  makes  the  compression  ratio worse than not using a BCJ
                 filter.  For example, if there are similar or even  identical
                 executables  then  filtering  will likely make the files less
                 similar and thus compression is worse.  The contents of  non-
                 executable  files  in  the  same  archive can matter too.  In
                 practice one has to try with and without a BCJ filter to  see
                 which is better in each situation.

              Different  instruction  sets  have different alignment: the exe-
              cutable file must be aligned to a multiple of this value in  the
              input data to make the filter work.

                     Filter      Alignment   Notes
                     x86             1       32-bit or 64-bit x86
                     ARM             4
                     ARM-Thumb       2
                     ARM64           4       4096-byte alignment is best
                     PowerPC         4       Big endian only
                     IA-64          16       Itanium
                     SPARC           4
                     RISC-V          2

              Since  the  BCJ-filtered  data is usually compressed with LZMA2,
              the compression ratio may be improved slightly if the LZMA2  op-
              tions are set to match the alignment of the selected BCJ filter.
              Examples:

              o  IA-64  filter has 16-byte alignment so pb=4,lp=4,lc=0 is good
                 with LZMA2 (2^4=16).

              o  RISC-V code has  2-byte  or  4-byte  alignment  depending  on
                 whether the file contains 16-bit compressed instructions (the
                 C   extension).    When   16-bit   instructions   are   used,
                 pb=2,lp=1,lc=3 or pb=1,lp=1,lc=3 is good.   When  16-bit  in-
                 structions aren't present, pb=2,lp=2,lc=2 is the best.  read-
                 elf  -h  can be used to check if "RVC" appears on the "Flags"
                 line.

              o  ARM64 is always 4-byte aligned so pb=2,lp=2,lc=2 is the best.

              o  The x86 filter is an exception.  It's usually good  to  stick
                 to LZMA2's defaults (pb=2,lp=0,lc=3) when compressing x86 ex-
                 ecutables.

              All BCJ filters support the same options:

              start=offset
                     Specify the start offset that is used when converting be-
                     tween  relative  and absolute addresses.  The offset must
                     be a multiple of the alignment of the filter (see the ta-
                     ble above).  The default is zero.  In practice,  the  de-
                     fault is good; specifying a custom offset is almost never
                     useful.

       --delta[=options]
              Add  the Delta filter to the filter chain.  The Delta filter can
              be only used as a non-last filter in the filter chain.

              Currently only simple byte-wise delta calculation is  supported.
              It  can  be  useful  when compressing, for example, uncompressed
              bitmap images or uncompressed PCM audio.  However, special  pur-
              pose algorithms may give significantly better results than Delta
              +  LZMA2.   This is true especially with audio, which compresses
              faster and better, for example, with flac(1).

              Supported options:

              dist=distance
                     Specify the distance of the delta calculation  in  bytes.
                     distance must be 1-256.  The default is 1.

                     For example, with dist=2 and eight-byte input A1 B1 A2 B3
                     A3 B5 A4 B7, the output will be A1 B1 01 02 01 02 01 02.

   Other options
       -q, --quiet
              Suppress  warnings  and notices.  Specify this twice to suppress
              errors too.  This option has no effect on the exit status.  That
              is, even if a warning was suppressed, the exit status  to  indi-
              cate a warning is still used.

       -v, --verbose
              Be  verbose.   If  standard error is connected to a terminal, xz
              will display a progress indicator.  Specifying  --verbose  twice
              will give even more verbose output.

              The progress indicator shows the following information:

              o  Completion  percentage is shown if the size of the input file
                 is known.  That is, the percentage cannot be shown in pipes.

              o  Amount of compressed data produced (compressing) or  consumed
                 (decompressing).

              o  Amount  of  uncompressed  data consumed (compressing) or pro-
                 duced (decompressing).

              o  Compression ratio, which is calculated by dividing the amount
                 of compressed data processed so far by the amount  of  uncom-
                 pressed data processed so far.

              o  Compression  or decompression speed.  This is measured as the
                 amount of uncompressed data consumed  (compression)  or  pro-
                 duced  (decompression)  per  second.  It is shown after a few
                 seconds have passed since xz started processing the file.

              o  Elapsed time in the format M:SS or H:MM:SS.

              o  Estimated remaining time is shown only when the size  of  the
                 input  file  is  known  and  a couple of seconds have already
                 passed since xz started processing the  file.   The  time  is
                 shown  in  a  less precise format which never has any colons,
                 for example, 2 min 30 s.

              When standard error is not a terminal, --verbose  will  make  xz
              print the filename, compressed size, uncompressed size, compres-
              sion  ratio,  and  possibly also the speed and elapsed time on a
              single line to standard error after compressing or decompressing
              the file.  The speed and elapsed time are included only when the
              operation took at least a few seconds.  If the operation  didn't
              finish,  for example, due to user interruption, also the comple-
              tion percentage is printed if the size  of  the  input  file  is
              known.

       -Q, --no-warn
              Don't set the exit status to 2 even if a condition worth a warn-
              ing  was  detected.   This  option  doesn't affect the verbosity
              level, thus both --quiet and --no-warn have to be  used  to  not
              display warnings and to not alter the exit status.

       --robot
              Print  messages  in a machine-parsable format.  This is intended
              to ease writing frontends that want to use  xz  instead  of  li-
              blzma,  which  may be the case with various scripts.  The output
              with this option enabled is meant to be  stable  across  xz  re-
              leases.  See the section ROBOT MODE for details.

       --info-memory
              Display,  in  human-readable  format,  how  much physical memory
              (RAM) and how many processor threads xz thinks  the  system  has
              and  the  memory usage limits for compression and decompression,
              and exit successfully.

       -h, --help
              Display a help message describing the  most  commonly  used  op-
              tions, and exit successfully.

       -H, --long-help
              Display  a  help message describing all features of xz, and exit
              successfully

       -V, --version
              Display the version number of xz and liblzma in  human  readable
              format.   To get machine-parsable output, specify --robot before
              --version.

ROBOT MODE
       The robot mode is activated with the --robot option.  It makes the out-
       put of xz easier to parse by other programs.  Currently --robot is sup-
       ported only together with --list,  --filters-help,  --info-memory,  and
       --version.   It  will be supported for compression and decompression in
       the future.

   List mode
       xz --robot --list uses tab-separated output.  The first column of every
       line has a string that indicates the type of the information  found  on
       that line:

       name   This is always the first line when starting to list a file.  The
              second column on the line is the filename.

       file   This line contains overall information about the .xz file.  This
              line is always printed after the name line.

       stream This line type is used only when --verbose was specified.  There
              are as many stream lines as there are streams in the .xz file.

       block  This line type is used only when --verbose was specified.  There
              are  as  many  block  lines as there are blocks in the .xz file.
              The block lines are shown after all the stream lines;  different
              line types are not interleaved.

       summary
              This  line type is used only when --verbose was specified twice.
              This line is printed after all block lines.  Like the file line,
              the summary line contains  overall  information  about  the  .xz
              file.

       totals This  line  is always the very last line of the list output.  It
              shows the total counts and sizes.

       The columns of the file lines:
              2.  Number of streams in the file
              3.  Total number of blocks in the stream(s)
              4.  Compressed size of the file
              5.  Uncompressed size of the file
              6.  Compression ratio, for example, 0.123.   If  ratio  is  over
                  9.999,  three  dashes (---) are displayed instead of the ra-
                  tio.
              7.  Comma-separated list of integrity check names.  The  follow-
                  ing strings are used for the known check types: None, CRC32,
                  CRC64,  and  SHA-256.  For unknown check types, Unknown-N is
                  used, where N is the Check ID as a decimal  number  (one  or
                  two digits).
              8.  Total size of stream padding in the file

       The columns of the stream lines:
              2.  Stream number (the first stream is 1)
              3.  Number of blocks in the stream
              4.  Compressed start offset
              5.  Uncompressed start offset
              6.  Compressed size (does not include stream padding)
              7.  Uncompressed size
              8.  Compression ratio
              9.  Name of the integrity check
              10. Size of stream padding

       The columns of the block lines:
              2.  Number of the stream containing this block
              3.  Block  number  relative  to the beginning of the stream (the
                  first block is 1)
              4.  Block number relative to the beginning of the file
              5.  Compressed start offset relative to  the  beginning  of  the
                  file
              6.  Uncompressed  start  offset relative to the beginning of the
                  file
              7.  Total compressed size of the block (includes headers)
              8.  Uncompressed size
              9.  Compression ratio
              10. Name of the integrity check

       If --verbose was specified twice, additional columns  are  included  on
       the  block lines.  These are not displayed with a single --verbose, be-
       cause getting this information requires many  seeks  and  can  thus  be
       slow:
              11. Value of the integrity check in hexadecimal
              12. Block header size
              13. Block  flags:  c  indicates that compressed size is present,
                  and u indicates that uncompressed size is present.   If  the
                  flag  is  not  set,  a dash (-) is shown instead to keep the
                  string length fixed.  New flags may be added to the  end  of
                  the string in the future.
              14. Size  of  the  actual compressed data in the block (this ex-
                  cludes the block header, block padding, and check fields)
              15. Amount of memory (in  bytes)  required  to  decompress  this
                  block with this xz version
              16. Filter  chain.   Note  that most of the options used at com-
                  pression time cannot be known, because only the options that
                  are needed for decompression are stored in the .xz headers.

       The columns of the summary lines:
              2.  Amount of memory (in bytes) required to decompress this file
                  with this xz version
              3.  yes or no indicating if all block  headers  have  both  com-
                  pressed size and uncompressed size stored in them
              Since xz 5.1.2alpha:
              4.  Minimum xz version required to decompress the file

       The columns of the totals line:
              2.  Number of streams
              3.  Number of blocks
              4.  Compressed size
              5.  Uncompressed size
              6.  Average compression ratio
              7.  Comma-separated  list  of  integrity  check  names that were
                  present in the files
              8.  Stream padding size
              9.  Number of files.  This is here to keep the order of the ear-
                  lier columns the same as on file lines.

       If --verbose was specified twice, additional columns  are  included  on
       the totals line:
              10. Maximum  amount  of memory (in bytes) required to decompress
                  the files with this xz version
              11. yes or no indicating if all block  headers  have  both  com-
                  pressed size and uncompressed size stored in them
              Since xz 5.1.2alpha:
              12. Minimum xz version required to decompress the file

       Future  versions may add new line types and new columns can be added to
       the existing line types, but the existing columns won't be changed.

   Filters help
       xz --robot --filters-help prints the supported filters in the following
       format:

       filter:option=<value>,option=<value>...

       filter Name of the filter

       option Name of a filter specific option

       value  Numeric value ranges appear as <min-max>.  String value  choices
              are shown within < > and separated by a | character.

       Each filter is printed on its own line.

   Memory limit information
       xz  --robot  --info-memory prints a single line with multiple tab-sepa-
       rated columns:

       1.  Total amount of physical memory (RAM) in bytes.

       2.  Memory usage limit for compression in bytes  (--memlimit-compress).
           A  special  value of 0 indicates the default setting which for sin-
           gle-threaded mode is the same as no limit.

       3.  Memory usage limit for decompression  in  bytes  (--memlimit-decom-
           press).   A  special value of 0 indicates the default setting which
           for single-threaded mode is the same as no limit.

       4.  Since xz 5.3.4alpha: Memory usage for multi-threaded  decompression
           in  bytes (--memlimit-mt-decompress).  This is never zero because a
           system-specific default value shown in the column 5 is used  if  no
           limit  has  been  specified explicitly.  This is also never greater
           than the value in the column 3 even if  a  larger  value  has  been
           specified with --memlimit-mt-decompress.

       5.  Since  xz  5.3.4alpha: A system-specific default memory usage limit
           that is used to limit the number of threads when  compressing  with
           an  automatic  number  of threads (--threads=0) and no memory usage
           limit has been specified (--memlimit-compress).  This is also  used
           as the default value for --memlimit-mt-decompress.

       6.  Since xz 5.3.4alpha: Number of available processor threads.

       In  the  future,  the  output of xz --robot --info-memory may have more
       columns, but never more than a single line.

   Version
       xz --robot --version prints the version number of xz and liblzma in the
       following format:

       XZ_VERSION=XYYYZZZS
       LIBLZMA_VERSION=XYYYZZZS

       X      Major version.

       YYY    Minor version.  Even numbers are stable.  Odd numbers are  alpha
              or beta versions.

       ZZZ    Patch  level  for stable releases or just a counter for develop-
              ment releases.

       S      Stability.  0 is alpha, 1 is beta, and 2 is stable.  S should be
              always 2 when YYY is even.

       XYYYZZZS are the same on both lines if xz and liblzma are from the same
       XZ Utils release.

       Examples: 4.999.9beta is 49990091 and 5.0.0 is 50000002.

EXIT STATUS
       0      All is good.

       1      An error occurred.

       2      Something worth a warning occurred, but  no  actual  errors  oc-
              curred.

       Notices (not warnings or errors) printed on standard error don't affect
       the exit status.

ENVIRONMENT
       xz  parses  space-separated lists of options from the environment vari-
       ables XZ_DEFAULTS and XZ_OPT, in this order, before parsing the options
       from the command line.  Note that only options are parsed from the  en-
       vironment  variables; all non-options are silently ignored.  Parsing is
       done with getopt_long(3) which is used also for the command line  argu-
       ments.

       Warning:  By  setting  these  environment variables, one is effectively
       modifying programs and scripts that run xz.  Most of  the  time  it  is
       safe to set memory usage limits, number of threads, and compression op-
       tions  via  the environment variables.  However, some options can break
       scripts.  An obvious example is --help which makes  xz  show  the  help
       text instead of compressing or decompressing a file.  More subtle exam-
       ples  are --quiet and --verbose.  In many cases it works well to enable
       the progress indicator using --verbose, but in some situations the  ex-
       tra messages create problems.  The verbosity level also affects the be-
       havior of --list.

       XZ_DEFAULTS
              User-specific or system-wide default options.  Typically this is
              set in a shell initialization script to enable xz's memory usage
              limiter  by  default  or set the default number of threads.  Ex-
              cluding shell initialization scripts and similar special  cases,
              scripts should never set or unset XZ_DEFAULTS.

       XZ_OPT This is for passing options to xz when it is not possible to set
              the  options  directly on the xz command line.  This is the case
              when xz is run by a script or tool, for example, GNU tar(1):

                     XZ_OPT=-2v tar caf foo.tar.xz foo

              Scripts may use XZ_OPT, for example, to set script-specific  de-
              fault  compression  options.   It  is still recommended to allow
              users to override XZ_OPT if that is reasonable.  For example, in
              sh(1) scripts one may use something like this:

                     XZ_OPT=${XZ_OPT-"-7e"}
                     export XZ_OPT

LZMA UTILS COMPATIBILITY
       The command line syntax of xz is practically a superset  of  lzma,  un-
       lzma,  and lzcat as found from LZMA Utils 4.32.x.  In most cases, it is
       possible to replace LZMA Utils with XZ Utils without breaking  existing
       scripts.   There are some incompatibilities though, which may sometimes
       cause problems.

   Compression preset levels
       The numbering of the compression level presets is not identical  in  xz
       and  LZMA Utils.  The most important difference is how dictionary sizes
       are mapped to different presets.  Dictionary size is roughly  equal  to
       the decompressor memory usage.

              Level     xz      LZMA Utils
               -0     256 KiB      N/A
               -1       1 MiB     64 KiB
               -2       2 MiB      1 MiB
               -3       4 MiB    512 KiB
               -4       4 MiB      1 MiB
               -5       8 MiB      2 MiB
               -6       8 MiB      4 MiB
               -7      16 MiB      8 MiB
               -8      32 MiB     16 MiB
               -9      64 MiB     32 MiB

       The dictionary size differences affect the compressor memory usage too,
       but  there  are some other differences between LZMA Utils and XZ Utils,
       which make the difference even bigger:

              Level     xz      LZMA Utils 4.32.x
               -0       3 MiB          N/A
               -1       9 MiB          2 MiB
               -2      17 MiB         12 MiB
               -3      32 MiB         12 MiB
               -4      48 MiB         16 MiB
               -5      94 MiB         26 MiB
               -6      94 MiB         45 MiB
               -7     186 MiB         83 MiB
               -8     370 MiB        159 MiB
               -9     674 MiB        311 MiB

       The default preset level in LZMA Utils is -7 while in XZ  Utils  it  is
       -6, so both use an 8 MiB dictionary by default.

   Streamed vs. non-streamed .lzma files
       The  uncompressed  size  of the file can be stored in the .lzma header.
       LZMA Utils does that when compressing regular files.   The  alternative
       is  to  mark  that  uncompressed size is unknown and use end-of-payload
       marker to indicate where the decompressor should stop.  LZMA Utils uses
       this method when uncompressed size isn't known, which is the case,  for
       example, in pipes.

       xz  supports  decompressing  .lzma files with or without end-of-payload
       marker, but all .lzma files  created  by  xz  will  use  end-of-payload
       marker  and  have  uncompressed  size  marked  as  unknown in the .lzma
       header.  This may be a problem in some uncommon situations.  For  exam-
       ple,  a  .lzma  decompressor in an embedded device might work only with
       files that have known uncompressed size.  If you hit this problem,  you
       need to use LZMA Utils or LZMA SDK to create .lzma files with known un-
       compressed size.

   Unsupported .lzma files
       The .lzma format allows lc values up to 8, and lp values up to 4.  LZMA
       Utils can decompress files with any lc and lp, but always creates files
       with  lc=3  and  lp=0.  Creating files with other lc and lp is possible
       with xz and with LZMA SDK.

       The implementation of the LZMA1 filter in liblzma requires that the sum
       of lc and lp must not exceed 4.  Thus, .lzma files, which  exceed  this
       limitation, cannot be decompressed with xz.

       LZMA Utils creates only .lzma files which have a dictionary size of 2^n
       (a power of 2) but accepts files with any dictionary size.  liblzma ac-
       cepts  only  .lzma  files  which have a dictionary size of 2^n or 2^n +
       2^(n-1).  This is to decrease  false  positives  when  detecting  .lzma
       files.

       These limitations shouldn't be a problem in practice, since practically
       all  .lzma  files  have been compressed with settings that liblzma will
       accept.

   Trailing garbage
       When decompressing, LZMA Utils silently  ignore  everything  after  the
       first  .lzma  stream.   In  most  situations, this is a bug.  This also
       means that LZMA Utils don't support  decompressing  concatenated  .lzma
       files.

       If  there  is  data left after the first .lzma stream, xz considers the
       file to be corrupt unless --single-stream was used.  This may break ob-
       scure scripts which have assumed that trailing garbage is ignored.

NOTES
   Compressed output may vary
       The exact compressed output produced from the same  uncompressed  input
       file may vary between XZ Utils versions even if compression options are
       identical.  This is because the encoder can be improved (faster or bet-
       ter  compression)  without  affecting  the file format.  The output can
       vary even between different builds of the same  XZ  Utils  version,  if
       different build options are used.

       The above means that once --rsyncable has been implemented, the result-
       ing  files won't necessarily be rsyncable unless both old and new files
       have been compressed with the same xz version.   This  problem  can  be
       fixed if a part of the encoder implementation is frozen to keep rsynca-
       ble output stable across xz versions.

   Embedded .xz decompressors
       Embedded .xz decompressor implementations like XZ Embedded don't neces-
       sarily support files created with integrity check types other than none
       and   crc32.    Since  the  default  is  --check=crc64,  you  must  use
       --check=none or --check=crc32 when creating files for embedded systems.

       Outside embedded systems, all .xz format decompressors support all  the
       check  types, or at least are able to decompress the file without veri-
       fying the integrity check if the particular check is not supported.

       XZ Embedded supports BCJ filters, but only with the default start  off-
       set.

EXAMPLES
   Basics
       Compress  the  file foo into foo.xz using the default compression level
       (-6), and remove foo if compression is successful:

              xz foo

       Decompress bar.xz into bar and don't remove bar.xz even  if  decompres-
       sion is successful:

              xz -dk bar.xz

       Create  baz.tar.xz  with the preset -4e (-4 --extreme), which is slower
       than the default -6, but needs less memory for compression  and  decom-
       pression (48 MiB and 5 MiB, respectively):

              tar cf - baz | xz -4e > baz.tar.xz

       A mix of compressed and uncompressed files can be decompressed to stan-
       dard output with a single command:

              xz -dcf a.txt b.txt.xz c.txt d.txt.lzma > abcd.txt

   Parallel compression of many files
       On  GNU  and *BSD, find(1) and xargs(1) can be used to parallelize com-
       pression of many files:

              find . -type f \! -name '*.xz' -print0 \
                  | xargs -0r -P4 -n16 xz -T1

       The -P option to xargs(1) sets the number  of  parallel  xz  processes.
       The best value for the -n option depends on how many files there are to
       be  compressed.   If there are only a couple of files, the value should
       probably be 1; with tens of thousands of files, 100 or even more may be
       appropriate to reduce the number of xz  processes  that  xargs(1)  will
       eventually create.

       The option -T1 for xz is there to force it to single-threaded mode, be-
       cause xargs(1) is used to control the amount of parallelization.

   Robot mode
       Calculate  how  many  bytes  have been saved in total after compressing
       multiple files:

              xz --robot --list *.xz | awk '/^totals/{print $5-$4}'

       A script may want to know that it is using new enough xz.  The  follow-
       ing  sh(1)  script  checks that the version number of the xz tool is at
       least 5.0.0.  This method is compatible with old beta  versions,  which
       didn't support the --robot option:

              if ! eval "$(xz --robot --version 2> /dev/null)" ||
                      [ "$XZ_VERSION" -lt 50000002 ]; then
                  echo "Your xz is too old."
              fi
              unset XZ_VERSION LIBLZMA_VERSION

       Set a memory usage limit for decompression using XZ_OPT, but if a limit
       has already been set, don't increase it:

              NEWLIM=$((123 << 20))  # 123 MiB
              OLDLIM=$(xz --robot --info-memory | cut -f3)
              if [ $OLDLIM -eq 0 -o $OLDLIM -gt $NEWLIM ]; then
                  XZ_OPT="$XZ_OPT --memlimit-decompress=$NEWLIM"
                  export XZ_OPT
              fi

   Custom compressor filter chains
       The  simplest  use for custom filter chains is customizing a LZMA2 pre-
       set.  This can be useful, because the presets cover only  a  subset  of
       the potentially useful combinations of compression settings.

       The  CompCPU columns of the tables from the descriptions of the options
       -0 ... -9 and --extreme are  useful  when  customizing  LZMA2  presets.
       Here are the relevant parts collected from those two tables:

              Preset   CompCPU
               -0         0
               -1         1
               -2         2
               -3         3
               -4         4
               -5         5
               -6         6
               -5e        7
               -6e        8

       If  you know that a file requires somewhat big dictionary (for example,
       32 MiB) to compress well, but you want to compress it quicker  than  xz
       -8  would do, a preset with a low CompCPU value (for example, 1) can be
       modified to use a bigger dictionary:

              xz --lzma2=preset=1,dict=32MiB foo.tar

       With certain files, the above command may be faster than  xz  -6  while
       compressing  significantly better.  However, it must be emphasized that
       only some files benefit from a big dictionary while keeping the CompCPU
       value low.  The most obvious situation, where a big dictionary can help
       a lot, is an archive containing very similar files of at  least  a  few
       megabytes  each.   The  dictionary  size has to be significantly bigger
       than any individual file to allow LZMA2 to take full advantage  of  the
       similarities between consecutive files.

       If  very high compressor and decompressor memory usage is fine, and the
       file being compressed is at least several hundred megabytes, it may  be
       useful  to  use  an  even  bigger dictionary than the 64 MiB that xz -9
       would use:

              xz -vv --lzma2=dict=192MiB big_foo.tar

       Using -vv (--verbose --verbose) like in the above example can be useful
       to see the memory requirements of the compressor and decompressor.  Re-
       member that using a dictionary bigger than the size of the uncompressed
       file is waste of memory, so the above command isn't  useful  for  small
       files.

       Sometimes  the  compression  time  doesn't matter, but the decompressor
       memory usage has to be kept low, for example, to make  it  possible  to
       decompress  the file on an embedded system.  The following command uses
       -6e (-6 --extreme) as a base and sets the dictionary  to  only  64 KiB.
       The  resulting  file  can  be decompressed with XZ Embedded (that's why
       there is --check=crc32) using about 100 KiB of memory.

              xz --check=crc32 --lzma2=preset=6e,dict=64KiB foo

       If you want to squeeze out as many bytes  as  possible,  adjusting  the
       number  of  literal  context bits (lc) and number of position bits (pb)
       can sometimes help.  Adjusting the number of literal position bits (lp)
       might help too, but usually lc and pb are more important.  For example,
       a source code archive contains mostly US-ASCII text, so something  like
       the following might give slightly (like 0.1 %) smaller file than xz -6e
       (try also without lc=4):

              xz --lzma2=preset=6e,pb=0,lc=4 source_code.tar

       Using  another  filter together with LZMA2 can improve compression with
       certain file types.  For example, to compress a x86-32 or x86-64 shared
       library using the x86 BCJ filter:

              xz --x86 --lzma2 libfoo.so

       Note that the order of the filter options is significant.  If --x86  is
       specified after --lzma2, xz will give an error, because there cannot be
       any  filter  after LZMA2, and also because the x86 BCJ filter cannot be
       used as the last filter in the chain.

       The Delta filter together with LZMA2 can give good results with  bitmap
       images.  It should usually beat PNG, which has a few more advanced fil-
       ters than simple delta but uses Deflate for the actual compression.

       The  image  has to be saved in uncompressed format, for example, as un-
       compressed TIFF.  The distance parameter of the Delta filter is set  to
       match  the number of bytes per pixel in the image.  For example, 24-bit
       RGB bitmap needs dist=3, and it is also good to pass pb=0 to  LZMA2  to
       accommodate the three-byte alignment:

              xz --delta=dist=3 --lzma2=pb=0 foo.tiff

       If  multiple  images  have been put into a single archive (for example,
       .tar), the Delta filter will work on that too as  long  as  all  images
       have the same number of bytes per pixel.

SEE ALSO
       xzdec(1),   xzdiff(1),   xzgrep(1),   xzless(1),   xzmore(1),  gzip(1),
       bzip2(1), 7z(1)

       XZ Utils: <https://tukaani.org/xz/>
       XZ Embedded: <https://tukaani.org/xz/embedded.html>
       LZMA SDK: <https://7-zip.org/sdk.html>

KEYWORD INDEX
       --arm64
       --armthumb
       --arm
       --best
       --block-list
       --block-size
       --check
       --compress
       --decompress
       --delta
       --extreme
       --fast
       --files0
       --files
       --filters-help
       --filters1
       --filters9
       --filters
       --flush-timeout
       --force
       --format
       --help
       --ia64
       --ignore-check
       --info-memory
       --keep
       --list
       --long-help
       --lzma1
       --lzma2
       --memlimit-compress
       --memlimit-decompress
       --memlimit-mt-decompress
       --memlimit
       --memory
       --no-adjust
       --no-sparse
       --no-sync
       --no-warn
       --powerpc
       --quiet
       --riscv
       --robot
       --single-stream
       --sparc
       --stdout
       --suffix
       --test
       --threads
       --to-stdout
       --uncompress
       --verbose
       --version
       --x86
       -0
       -9
       -c
       -d
       -e
       -f
       -h
       -k
       -l
       -M
       -q
       -S
       -t
       -v
       -z
       block
       file
       GiB
       KiB
       LIBLZMA_VERSION
       MiB
       name
       stream
       summary
       totals
       XZ_DEFAULTS
       XZ_OPT
       XZ_VERSION

Tukaani                           2025-03-08                             XZ(1)